Cortical actin contributes to spatial organization of ER–PM junctions

نویسندگان

  • Ting-Sung Hsieh
  • Yu-Ju Chen
  • Chi-Lun Chang
  • Wan-Ru Lee
  • Jen Liou
چکیده

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate crucial activities ranging from Ca2+ signaling to lipid metabolism. Spatial organization of ER-PM junctions may modulate the extent and location of these cellular activities. However, the morphology and distribution of ER-PM junctions are not well characterized. Using photoactivated localization microscopy, we reveal that the contact area of single ER-PM junctions is mainly oblong with the dimensions of ∼120 nm × ∼80 nm in HeLa cells. Using total internal reflection fluorescence microscopy and structure illumination microscopy, we show that cortical actin contributes to spatial distribution and stability of ER-PM junctions. Further functional assays suggest that intact F-actin architecture is required for phosphatidylinositol 4,5-bisphosphate homeostasis mediated by Nir2 at ER-PM junctions. Together, our study provides quantitative information on spatial organization of ER-PM junctions that is in part regulated by F-actin. We envision that functions of ER-PM junctions can be differentially regulated through dynamic actin remodeling during cellular processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saltatory formation, sliding and dissolution of ER–PM junctions in migrating cancer cells

We demonstrated three novel forms of dynamic behaviour of junctions between the ER (endoplasmic reticulum) and the PM (plasma membrane) in migrating cancer cells: saltatory formation, long-distance sliding and dissolution. The individual ER-PM junctions formed near the leading edge of migrating cells (usually within 0.5 μm of polymerized actin and close to focal adhesions) and appeared suddenly...

متن کامل

The Plant Cytoskeleton, NET3C, and VAP27 Mediate the Link between the Plasma Membrane and Endoplasmic Reticulum

The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic structure, and it contacts the plasma membrane (PM) at ER-PM anchor/contact sites. These sites are known to be essential for communication between the ER and PM for lipid transport, calcium influx, and ER morphology in mammalian and fungal cells. The nature of these contact sites is unknown in plants, and here, we hav...

متن کامل

Store-Operated Ca2+ Entry Evidence for a Secretion-like Coupling Model

The elusive coupling between endoplasmic reticulum (ER) Ca2+ stores and plasma membrane (PM) "store-operated" Ca2+ entry channels was probed through a novel combination of cytoskeletal modifications. Whereas coupling was unaffected by disassembly of the actin cytoskeleton, in situ redistribution of F-actin into a tight cortical layer subjacent to the PM displaced cortical ER and prevented coupl...

متن کامل

ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly

The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction p...

متن کامل

Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions.

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are highly conserved subcellular structures. Despite their importance in Ca(2+) signaling and lipid trafficking, the molecular mechanisms underlying the regulation and functions of ER-PM junctions remain unclear. By developing a genetically encoded marker that selectively monitors ER-PM junctions, we found that the connection between ER ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2017